433 research outputs found

    A dynamic HAZOP case study using the Texas City refinery explosion

    Get PDF
    © 2016 Elsevier Ltd. The catastrophic explosion that occurred at Texas City on 23 March 2005 during the start-up of the raffinate splitter resulted in an estimated 15 deaths and 180 injuries. Since the incident, several studies have investigated the root causes of the disaster. Some contributing factors to the incident include wider organisational, process safety management, and human elements. There have also been some attempts to model the sequence of events before the incident, and the consequences of the resulting fires and explosions. This study provides a dynamic model of the sequence of events leading up to the incident and replicates the reported process variables during the isomerisation unit start-up on the day of the incident. The resulting simulation model is used as the framework for a dynamic hazard and operability (HAZOP) study

    Experimental and numerical investigation of Helmholtz resonators and perforated liners as attenuation devices in industrial gas turbine combustors

    Get PDF
    This paper reports upon developments in the simulation of the passive control of combustion dynamics in industrial gas turbines using acoustic attenuation devices such as Helmholtz resonators and perforated liners. Combustion instability in gas turbine combustors may, if uncontrolled, lead to large-amplitude pressure fluctuations, with consequent serious mechanical problems in the gas turbine combustor system. Perforated combustor walls and Helmholtz resonators are two commonly used passive instability control devices. However, experimental design of the noise attenuation device is time-consuming and calls for expensive trial and error practice. Despite significant advances over recent decades, the ability of Computational Fluid Dynamics to predict the attenuation of pressure fluctuations by these instability control devices is still not well validated. In this paper, the attenuation of pressure fluctuations by a group of multi-perforated panel absorbers and Helmholtz resonators are investigated both by experiment and computational simulation. It is demonstrated that CFD can predict the noise attenuation from Helmholtz resonators with good accuracy. A porous material model is modified to represent a multi-perforated panel and this perforated wall representation approach is demonstrated to be able to accurately predict the pressure fluctuation attenuation effect of perforated panels. This work demonstrates the applicability of CFD in gas turbine combustion instability control device design

    Application of a porous media model for the acoustic damping of perforated plate absorbers

    Get PDF
    Perforated panel, or plate, absorbers are commonly employed to reduce sound pressure levels across a broad range of applications including the built environment, industrial installations and propulsion devices. The acoustic performance of a perforated plate absorber depends upon a number of parameters such as physical geometry of the absorber, acoustic spectrum and sound pressure level of the acoustic source. As a consequence, experimental determination of acoustic properties is often required on an individual basis in order to optimise performance.Computational simulation of a perforated plate absorber would alleviate the necessity for experimental characterisation. Fundamentally this can be achieved by the direct numerical solution of the underlying governing equations, the compressible form of the Navier-Stokes equations. The numerical methodology is available and routinely implemented as a Computational Fluid Dynamics solver. However, the numerical simulation of flow through a perforated plate with a large number of very small orifices would require significant computational resource, not routinely available for engineering design simulations.In this paper, a porous media model, implemented as a sub-model within a CFD solver, is investigated and validated against a number of well-acknowledged acoustic experiments undertaken in an impedance tube, for a sound pressure wave incident normal to a perforated plate. The model expresses the underlying governing equations within the perforated plates in terms of a pseudo-physical velocity representation. Comparison between three dimensional, compressible, laminar flow CFD simulations and experimental data, demonstrate that the porous model is able to represent acoustic properties of perforated plate absorbers in linear and non-linear absorption regimes and also the inertial effect in the presence of a mean bias flow.The model significantly reduces the computational resource required in comparison to full geometric resolution and is thus a promising tool for the engineering design of perforated plate absorbers

    A porous media model for the numerical simulation of acoustic attenuation by perforated liners in the presence of grazing flows

    Get PDF
    In this paper, a novel model is proposed for the numerical simulation of noise-attenuating perforated liners. Effusion cooling liners offer the potential of being able to attenuate combustion instabilities in gas turbine engines. However, the acoustic attenuation of a perforated liner is a combination of a number of interacting factors, resulting in the traditional approach of designing perforated combustor liners relying heavily on combustor rig tests. On the other hand, direct computation of thousands of small-scale holes is too expensive to be employed as an engineering design tool. In recognition of this, a novel physical velocity porous media (PVPM) model was recently proposed by the authors as a computationally less demanding approach to represent the acoustic attenuation of perforated liners. The model was previously validated for the normal incidence of a sound wave by comparison with experimental data from impedance tubes. In this paper, the model is further developed for configurations where the noise signal propagates in parallel with the perforated liners, both in the presence and absence of a mean flow. The model is significantly improved and successfully validated within coexisting grazing and bias flow scenarios, with reference to a series of well-recognized experimental data

    Large Eddy Simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers

    Get PDF
    A novel hybrid pressure-based compressible solver is developed and validated for low Mach number acoustic flow simulation. The solver is applied to the propagation of an acoustic pulse in a simple expansion muffler, a configuration frequently employed in HVAC and automotive exhaust systems. A set of benchmark results for experimental analysis of the simple expansion muffler both with and without flow are obtained to compare attenuation in forced pulsation for various mean-flow velocities. The experimental results are then used for validation of the proposed pressure-based compressible solver. Compressible, Unsteady Reynolds Averaged Navier–Stokes (URANS) simulation of a muffler with a mean through flow is conducted and results are presented to demonstrate inherent limitations associated with this approach. Consequently, a mixed synthetic inflow boundary condition is developed and validated for compressible Large Eddy Simulation (LES) of channel flow. The mixed synthetic boundary is then employed for LES of a simple expansion muffler to analyse the flow-acoustic and acoustic-pulse interactions inside the expansion muffler. The improvement in the prediction of vortex shedding inside the chamber is highlighted in comparison to the URANS method. Further, the effect of forced pulsation on flow-acoustic is observed in regard to the shift in Strouhal number inside the simple expansion muffler

    A model to predict acoustic resonant frequencies of distributed Helmholtz resonators on gas turbine engines

    Get PDF
    © 2019 by the authors. Helmholtz resonators, traditionally designed as a narrow neck backed by a cavity, are widely applied to attenuate combustion instabilities in gas turbine engines. The use of multiple small holes with an equivalent open area to that of a single neck has been found to be able to significantly improve the noise damping bandwidth. This type of resonator is often referred to as "distributed Helmholtz resonator". When multiple holes are employed, interactions between acoustic radiations from neighboring holes changes the resonance frequency of the resonator. In this work, the resonance frequencies from a series of distributed Helmholtz resonators were obtained via a series of highly resolved computational fluid dynamics simulations. A regression analysis of the resulting response surface was undertaken and validated by comparison with experimental results for a series of eighteen absorbers with geometries typically employed in gas turbine combustors. The resulting model demonstrates that the acoustic end correction length for perforations is closely related to the effective porosity of the perforated plate and will be obviously enhanced by acoustic radiation effect from the perforation area as a whole. This model is easily applicable for engineers in the design of practical distributed Helmholtz resonators

    Large eddy simulation of buoyant plumes

    Get PDF
    A 3D parallel CFD code is written to investigate the characteristics of and differences between Large Eddy Simulation (LES) models in the context of simulating a thermal buoyant plume. An efficient multigrid scheme is incorporated to solve the Poisson equation, resulting from the fractional step, projection method used to solve the Low Mach Number (LMN) Navier-Stokes equations. A wide range of LES models are implemented, including a variety of eddy models, structure models, mixed models and dynamic models, for both the momentum stresses and the temperature fluxes. Generalised gradient flux models are adapted from their RANS counterparts, and also tested. A number of characteristics are observed in the LES models relating to the thermal plume simulation in particular and turbulence in general. Effects on transition, dissipation, backscatter, equation balances, intermittency and energy spectra are all considered, as are the impact of the governing equations, the discretisation scheme, and the effect of grid coarsening. Also characteristics to particular models are considered, including the subgrid kinetic energy for the one-equation models, and constant histories for dynamic models. The argument that choice of LES model is unimportant is shown to be incorrect as a general statement, and a recommendation for when the models are best used is given.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Assessment of cool thermal storage strategies in Kuwait

    Get PDF
    The extensive use of air conditioning for indoor cooling in offices and large commercial buildings in Kuwait represents a major part of the power and electricity consumption in that country. The main objective of this research was to investigate ice and chilled water cool thermal storage technologies and operating strategies for air conditioning. This was motivated by the extreme climatic conditions in Kuwait and the necessity to reduce both maximum power demand and energy consumption whilst being economically feasible. This work represents the first such study undertaken. In Kuwait approximately 45% of the total annual exported electrical energy is consumed solely by air conditioning systems as a result of the very high ambient temperatures occurring between March and October. Furthermore, it was estimated air conditioning systems represent about 62% of the peak electrical load. To assess the potential of cool thermal storage, the air conditioning system for an existing clinic building, representing a typical medium size building in Kuwait, was designed with and without a cool thermal storage system. The results demonstrate that internal ice-on-coil and chilled water storage systems are suitable storage technologies that can be implemented in Kuwait. The cooling demand of the clinic building was first estimated using the ESP-r building energy simulation program, following which the different components in the air conditioning systems were sized including chiller, storage tanks, pumps, air handling units for conventional, ice and chilled water storage air conditioning systems operating with load levelling, 50% demand limiting and full storage strategies. The heat gains by different auxiliary components in the air conditioning systems were estimated and the final cooling demand profiles were developed. For each air conditioning design, the power and energy consumption for the design day condition and over the whole year were calculated and analysed. Furthermore, the life cycle costs were determined based on the estimated capital, maintenance, operating costs and a financial analysis was carried out. For the Kuwaiti climate, the results demonstrate ice and chilled water storage systems can reduced the maximum power consumption during the day time when the electricity demand is high and largest reduction in the maximum power achieved full storage strategy. However, the energy consumption of ice storage system operating with 50% demand limiting and full strategies were found were found to be higher than the conventional air conditioning system. Nevertheless, the energy consumption in the ice storage system with a load levelling operating strategy was slightly lower. Chilled water storage system was found to be unlike ice storage system, the energy consumption in all operating strategies improved over the conventional system. Based on the estimated life cycle cost using the actual operating costs for both the government and user, it was established that for the government, ice storage operating with load levelling strategy and all other strategies of the chilled water storage systems would be more economical than conventional systems. However, for the user, load levelling ice storage, load levelling chilled water storage, and 50% demand limiting chilled water storage systems would be more cost effective. Out of all alternatives, chilled water storage system with a load levelling strategy was found to be the most cost effective for the climate of Kuwait and for similar climates of Kuwait. Although, the outcome from this research work can not be generalised however, the method of sizing and energy and economic analysis, which was discussed in this thesis can be generalised and followed to evaluate the impact of cool thermal storage systems on energy performance and economy of the air conditioning systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Synthetic turbulence generation for LES on unstructured Cartesian grids

    Get PDF
    A parallel CFD code to solve incompressible fluid flow on unstructured Cartesian meshes has been developed almost from ground up. Turbulence statistics have been computed using the Large Eddy Simulation technique. The new code was subjected to some validation where results are compared to available reference data. An analysis on the iteration and discretisation errors was carried out. This code was then applied to predict the lid driven cubical cavity flow in at a bulk Reynolds number of 10,000. Three different mesh sizes were used to investigate independence of results on grid size. Amongst others, turbulence statistics were checked against Kolmogorov -5/3 law. A detailed study of synthetic turbulence methods was carried out and applied to the prediction of flow in a duct with square cross section using an inlet and outflow boundaries. Three different turbulence generation methods were investigated namely the artificial turbulence generation method, random perturbation method and a novel hybrid particle-wave method also termed as the enhanced vortex particle method in this study. The mean and instantaneous field variables together with the turbulence statistics from each method were compared and analysed. Finally, the code was used to solve turbulent flow over arrays of wall-mounted obstacles with mesh densities comparable to previous studies. The velocity profiles and vector fields at various locations in the domain were compared to data obtained from recent LES simulations. The artificial turbulence generation case was applied for the first time to produce turbulence at the inlet. The turbulence kinetic energy spectrum distribution agrees well with reference data. Important findings from this study are clarified and some suggestions for future work are given in the conclusions section.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Wave propagation in stereo-lithographical (STL) bone replicas at oblique incidence

    Get PDF
    Comparisons between predictions of a Biot-Allard model allowing for angle-dependent elasticity and angle-and-porosity dependent tortuosity and transmission data obtained at normal incidence on water-saturated replica bones are extended to oblique incidence. The model includes two parameters which are adjusted for best fit at normal incidence. Using the same parameter values, it is found that predictions of the variation of transmitted waveforms with angle through two types of bone replica are in reasonable agreement with data despite the fact that scattering is not included in the theory
    • …
    corecore